MCP Guide: Complete Implementation
From technical analysis to production deployment with mcpresso
1. What is Model Context Protocol (MCP)?
Model Context Protocol (MCP) is a standard developed by Anthropic to connect AI agents to enterprise data sources. MCP allows models like Claude to access your APIs, databases, and internal systems in a secure and structured way.
šÆ Real-world Use Cases
- ChatGPT analyzing your Salesforce CRM
- Claude generating reports from your database
- AI agents automating your internal workflows
- AI accessing your technical documentation
MCP works on a client-server architecture where your MCP server exposes your data as "resources" that AI agents can discover and use automatically.
2. MCP Server Architecture
An MCP server exposes three main components:
š Resources
Data exposed to AI agents (users, documents, etc.)
š§ Tools
Actions that agents can execute (CRUD, search, etc.)
š Prompts
Reusable prompt templates for agents
3. Preliminary Technical Analysis
Before implementing MCP, evaluate your existing architecture:
# Existing APIs ā” Documented REST APIs ā” Authentication in place (OAuth, API keys) ā” Rate limiting configured ā” Data schemas defined # Infrastructure ā” Server capable of handling JSON-RPC ā” HTTPS configured ā” Monitoring in place ā” Backup and recovery # Security ā” Data access policies ā” Audit trail ā” Sensitive data encryption ā” GDPR/CCPA compliance
ā ļø Critical point: Don't expose all your data at once. Start with a non-critical subset to validate the approach.
4. Manual Implementation vs mcpresso
Implementing MCP manually requires handling the JSON-RPC protocol, schema validation, and serialization. Here's a comparison:
Manual Implementation
// Manual protocol handling server.on('resource/list', async (request) => { try { // Manual validation if (!isValidRequest(request)) { return errorResponse('Invalid request'); } // Business logic const resources = await getResources(); // Manual serialization return { jsonrpc: '2.0', id: request.id, result: { resources: [ { uri: 'users/123', name: 'John Doe', description: 'CRM User', mimeType: 'application/json' } ] } }; } catch (error) { return errorResponse(error.message); } }); // + 100 lines of boilerplate...
With mcpresso
import { createResource } from 'mcpresso'; const userResource = createResource({ name: 'user', schema: UserSchema, uri_template: 'users/{id}', handlers: { list: async () => getUsers(), get: async ({ id }) => getUser(id), create: async (data) => createUser(data) }, methodConfig: { create: { omit: ['id', 'createdAt'] }, search: { schema: z.object({ query: z.string(), department: z.string().optional() }) } } }); // mcpresso automatically generates: // - Zod validation // - JSON-RPC serialization // - Error handling // - TypeScript types
5. Setup with mcpresso
Installation and configuration of an MCP server with mcpresso:
npm install mcpresso zod # or yarn add mcpresso zod
import { z } from 'zod'; import { createResource, createMCPServer } from 'mcpresso'; // 1. Define schemas const UserSchema = z.object({ id: z.string(), name: z.string(), email: z.string().email(), department: z.string(), createdAt: z.date(), updatedAt: z.date() }); const NoteSchema = z.object({ id: z.string(), title: z.string(), content: z.string(), authorId: z.string(), tags: z.array(z.string()), createdAt: z.date() }); // 2. Create resources const userResource = createResource({ name: 'user', schema: UserSchema, uri_template: 'users/{id}', handlers: { list: async () => { return await db.users.findMany(); }, get: async ({ id }) => { return await db.users.findUnique({ where: { id } }); }, search: async ({ query, department }) => { return await db.users.findMany({ where: { OR: [ { name: { contains: query } }, { email: { contains: query } } ], department: department || undefined } }); } }, methodConfig: { search: { schema: z.object({ query: z.string().describe('Search in name or email'), department: z.string().optional().describe('Filter by department') }) } } }); const noteResource = createResource({ name: 'note', schema: NoteSchema, uri_template: 'notes/{id}', relations: { authorId: { type: 'user' } }, handlers: { list: async () => db.notes.findMany(), get: async ({ id }) => db.notes.findUnique({ where: { id } }), create: async (data) => db.notes.create({ data }), update: async ({ id, ...data }) => { return db.notes.update({ where: { id }, data }); } }, customMethods: { summarize: { description: 'Generate AI summary of notes', inputSchema: z.object({ authorId: z.string(), period: z.enum(['week', 'month', 'year']) }), handler: async ({ authorId, period }) => { const notes = await getNotesForPeriod(authorId, period); return await generateAISummary(notes); } } } }); // 3. Create server const server = createMCPServer({ name: 'company_mcp_server', version: '1.0.0', resources: [userResource, noteResource], // Security auth: { issuer: 'https://auth.company.com' }, // Rate limiting rateLimit: { windowMs: 15 * 60 * 1000, // 15 minutes limit: 100 // requests per window }, // Automatic retry retry: { retries: 3, factor: 2, minTimeout: 1000, maxTimeout: 10000 }, // Types for AI models exposeTypes: true }); // 4. Start server server.listen(3000, () => { console.log('MCP Server running on http://localhost:3000'); });
6. Security and Production
Securing an MCP server is critical in production:
š Security Checklist
- OAuth 2.1: Robust authentication
- Rate limiting: Protection against abuse
- HTTPS mandatory: Transport encryption
- Strict validation: All inputs validated
- Audit logs: Access traceability
- Principle of least privilege: Minimal necessary access
7. Best Practices
š Performance
- Pagination on lists
- Cache frequent queries
- Appropriate timeouts
- Performance monitoring
š§ Maintainability
- API versioning
- Up-to-date documentation
- Automated tests
- Mandatory code review
šÆ AI Agent UX
- Clear resource descriptions
- Examples in schemas
- Explicit error messages
- Types exposed to models
8. Deployment
mcpresso is compatible with major deployment platforms:
Edge Functions deployment
Serverless with API Gateway
Global edge computing
š Tip: Check the official documentation of your cloud provider for step-by-step deployment guides.
Ready to revolutionize your AI operations?
Get early access to build and deploy production-ready AI agents with enterprise-grade security and governance